The **Duality of Time Theory**, that results from the
**Single Monad Model of the Cosmos**, explains how *physical multiplicity* is emerging from absolute
(metaphysical) *Oneness*, at every instance of our normal time! This leads to the **Ultimate Symmetry** of space and its dynamic formation and breaking into the *physical* and *psychical* (supersymmetrical) creations, in orthogonal time directions. *General Relativity* and *Quantum Mechanics* are complementary **consequences** of the Duality of Time Theory, and all the fundamental interactions become properties of the new **granular complex-time geometry**, at diifferent dimensions. - **=> Conference Talk [Detailed Presentation]**

Ibn al-Arabi's Concept of Time and Creation

After the amazing discoveries and the enormous amount of data obtained by telescopes and space shuttles, and with the success of the theories of Relativity and Quantum Mechanics, scientists tried to build new cosmological models to explain the structure and origin of the universe based on the new information. We shall give here a very short summary of the major theories of cosmology that have developed recently.

Scientists up to the beginning of the twentieth century believed in a stationary universe outside the solar system, but this was soon proven to be wrong. Actually the same theory that Einstein first tried to make fit a steady universe and fixed stars later proved that the universe is expanding. This implied that the universe had started at one moment, about fifteen billion years ago, from a very small point, but with very high density, and then it expanded to its present state. This was called the 'Big Bang', and many cosmological models were developed based on this view (Narlikar 1995: ch.2, ch.5).

The 'Steady State' theory tried to explain the expansion of the universe by supposing a continuous creation of matter that filled the space produced by the expansion, but the discovery of cosmic microwave background radiation in 1965 by Penzias and Wilson caused the Steady State model to be completely discarded. The background radiation was interpreted as the faint afterglow of the intense radiation of a 'Hot Big Bang', which had been predicted by Alpher and Hermann back in 1949, although some people also attribute it to Gamov back in 1946 (Dolgov 1990: 11).

The problem with the background radiation was that all measurements showed it to be very uniform in all directions. This isotropy of the background radiation was a riddle because with homogeneity no stars or galaxies could be produced (Taylor 1993: 194). It was only in 1992 that NASA's Cosmic Background Explorer satellite (COBE) detected the first anisotropies in this background radiation: one part in a hundred thousand, which may indicate the seeds from which galaxies formed (Schewe 1992: 1).

The Big Bang model was very good in explaining many of the observations, yet on the other hand there were many contradictions (Linde 1990: 4). Many of these theoretical contradictions were resolved by the 'inflationary scenario' devised by Alan Guth in 1979. Guth looked at a very early stage in the development of the universe from about 10^{-32} to 10^{-43} of a second after the initial creation. During this period matter was in very highly excited states, causing the most extreme conditions of high density and pressure which made the cosmos expand exponentially, filling the universe with an intense dense fire of particles and photons (Linde 1990: 42).

In classical (Newtonian) mechanics, one could predict the behaviour of a system if one exactly knew its initial state. But in Quantum Mechanics, we can only calculate the probability of how the system will evolve (White 1966: 29). In either case, however, the main problem in cosmology is to determine the initial state that the laws should be applied to. One successful approach to get round this problem is to work backwards by using the observed properties of the universe to deduce what it was like in an earlier state.

The problem with the inflationary theory is that, in order for inflation to have occurred, the universe must have been formed containing some matter in a highly excited state, but the next question is why this matter was in such an excited state. To overcome this, some scientists tried to apply Quantum Mechanics to the whole universe, and the result was the theory of Quantum Cosmology.[4] This may sound absurd, because typically large systems (such as the universe) obey classical, not quantum, laws. Einstein's theory of General Relativity is a classical theory that accurately describes the evolution of the universe from the first fraction of a second of its existence up to now. However it is known that General Relativity is inconsistent with the principles of Quantum Theory, and is therefore not an appropriate description of the physical processes that occur at very small length scales or over very short times. To describe such processes we require the theory of Quantum Gravity.

In non-gravitational physics, the approach to quantum theory that has proved most successful involves mathematical objects known as 'Path Integrals' that were introduced by the Nobel Prize winner Richard Feynman. In the Path Integral approach, the probability that a system in an initial state A will evolve to a final state B is given by adding up a contribution from every possible history of the system that starts in A and ends in B. For large systems, contributions from similar histories cancel each other in the sum and only one history is important. This history is the history that classical physics would predict. At any moment, the universe is described by the geometry of the three spatial dimensions as well as by any matter fields that may be present. Given this data, one can in principle use the Path Integral to calculate the probability of evolving to any other prescribed state at a later time. However, this still requires knowledge of the initial state.

Quantum Cosmology is a possible solution to this problem. In 1983, Stephen Hawking and James Hartle developed a theory of Quantum Cosmology which has become known as the 'No Boundary Proposal'. In practice, calculating probabilities in Quantum Cosmology using the full Path Integral is formidably difficult and an approximation has to be used. This is known as the 'semi-classical approximation', because its validity lies somewhere between that of classical and quantum physics. In the semi-classical approximation, one argues that most of the four-dimensional (spacetime) geometries occurring in the Path Integral will give very small contributions to the Path Integral and hence these can be neglected, so we can deal only with three dimensions (space). The Path Integral can be calculated by just considering a few geometries that give a particularly large contribution. These are known as 'Instantons' (from 'the instant', because it aims at omitting time, so it is like a snapshot that takes into account only the three coordinates of space), which describes the spontaneous appearance of a universe from literally nothing. In this way we don't have to think about the cosmos as something that takes place inside some bigger spacetime arena. Once the universe exists, Quantum Cosmology can be approximated by General Relativity, so time appears.

Research in these areas is still ongoing, but one of the many outstanding problems in trying to construct a quantum field theory of gravitation concerns the appropriate interpretation of quantum states for configurations that make no overt reference to 'time'. We shall see by the end of this book that Ibn Arabi's understanding of time could be a key to eliminating these peculiarities, because he simply views the world as an eternal existence that is perpetually being re-created. He also unified space and time in a manner that has apparently never been thought of before or since.

## ... Monadology =>:

## ... Universe Based =>:

## ... Physical Processes =>:

## ... Quantum States =>:

## ... Stephen Hawking =>:

## ... Extreme Conditions =>:

## ... Present State =>:

## ... Outstanding Problems =>:

## ... Richard Feynman =>:

## ... Fifteen Billion =>:

## ... Twentieth Century =>:

## ... Final State =>:

... Space Transcendence Read this short concise exploration of the Duality of Time Postulate: DoT: The Duality of Time Postulate and Its Consequences on General Relativity and Quantum Mechanics ...

... es and space shuttles, and with the success of the theories of Relativity and Quantum Mechanics, scientists tried to build new cosmological models to explain the structure and origin of the UNIVERSE BASED on the new information. We shall give here a very short summary of the major theories ...

... second of its existence up to now. However it is known that General Relativity is inconsistent with the principles of Quantum Theory, and is therefore not an appropriate description of the PHYSICAL PROCESSES that occur at very small length scales or over very short times. To describe such ...

... s. Research in these areas is still ongoing, but one of the many outstanding problems in trying to construct a quantum field theory of gravitation concerns the appropriate interpretation of QUANTUM STATES for configurations that make no overt reference to 'time'. We shall see by the end of ...

... ty of evolving to any other prescribed state at a later time. However, this still requires knowledge of the initial state. Quantum Cosmology is a possible solution to this problem. In 1983, Stephen Hawking and James Hartle developed a theory of Quantum Cosmology which has become known as t ...

... ly stage in the development of the universe from about 10 -32 to 10 -43 of a second after the initial creation. During this period matter was in very highly excited states, causing the most EXTREME CONDITIONS of high density and pressure which made the cosmos expand exponentially, filling ...

... rse is expanding. This implied that the universe had started at one moment, about fifteen billion years ago, from a very small point, but with very high density, and then it expanded to its PRESENT STATE . This was called the 'Big Bang', and many cosmological models were developed based on ...

... bigger spacetime arena. Once the universe exists, Quantum Cosmology can be approximated by General Relativity, so time appears. Research in these areas is still ongoing, but one of the many OUTSTANDING PROBLEMS in trying to construct a quantum field theory of gravitation concerns the appro ...

... -gravitational physics, the approach to quantum theory that has proved most successful involves mathematical objects known as 'Path Integrals' that were introduced by the Nobel Prize winner Richard Feynman. In the Path Integral approach, the probability that a system in an initial state A ...

... e theory that Einstein first tried to make fit a steady universe and fixed stars later proved that the universe is expanding. This implied that the universe had started at one moment, about FIFTEEN BILLION years ago, from a very small point, but with very high density, and then it expanded ...

... of the universe based on the new information. We shall give here a very short summary of the major theories of cosmology that have developed recently. Scientists up to the beginning of the TWENTIETH CENTURY believed in a stationary universe outside the solar system, but this was soon prov ...

... known as 'Path Integrals' that were introduced by the Nobel Prize winner Richard Feynman. In the Path Integral approach, the probability that a system in an initial state A will evolve to a FINAL STATE B is given by adding up a contribution from every possible history of the system that st ...

The science of Time is a noble science, that reveals the secret of Eternity. Only the Elites of Sages may ever come to know this secret. It is called the First Age, or the Age of ages, from which time is emerging.

Welcome to the Single Monad Model of the Cosmos and Duality of Time Theory

I have no doubt that this is the most significant discovery in the history of mathematics, physics and philosophy, ever!

By revealing the mystery of the connection between discreteness and contintuity, this novel understanding of the complex (time-time) geometry, will cause a paradigm shift in our knowledge of the fundamental nature of the cosmos and its corporeal and incorporeal structures.

*Enjoy reading... *

**Mohamed Haj Yousef**

Check this detailed video presentation on "Deriving the Principles of Special, General and Quantum Relativity Based on the Single Monad Model Cosmos and Duality of Time Theory".

Download the Book "DOT: The Duality of Time Postulate and Its Consequences on General Relativity and Quantum Mechanics" or: READ ONLINE .....>>>>

Because He loves beauty, Allah invented the World with ultimate perfection, and since He is the All-Beautiful, He loved none but His own Essence. But He also liked to see Himself reflected outwardly, so He created (the entities of) the World according to the form of His own Beauty, and He looked at them, and He loved these confined forms. Hence, the Magnificent made the absolute beauty --routing in the whole World-- projected into confined beautiful patterns that may diverge in their relative degrees of brilliance and grace.