The Duality of Time Theory, that results from the Single Monad Model of the Cosmos, explains how physical multiplicity is emerging from absolute (metaphysical) Oneness, at every instance of our normal time! This leads to the Ultimate Symmetry of space and its dynamic formation and breaking into the physical and psychical (supersymmetrical) creations, in orthogonal time directions. General Relativity and Quantum Mechanics are complementary consequences of the Duality of Time Theory, and all the fundamental interactions become properties of the new granular complex-time geometry, at different dimensions. - => Conference Talk - Another Conference [Detailed Presentation]
Mohamed Haj Yousef is a writer and researcher interested in physics, cosmology, philosophy and Islamic thought, especially with regard to mysticism and Ibn al-Arabi.
He published numerous articles in Arabic and English that combine science, philosophy and Islamic thought. Most of these articles are accessible online at: ibnalarabi.com.
He also published several books on the subject of time, and other related subjects in Islamic thought and Sufi mysticism, including:
______________________________________________________________
The Sufi Interpretation of Joseph Story: (The Path of the Heart from Existence to Perishing and the to Endurance), al-Marifa (Aleppo, Beirut), CreateSpace (Charleston), Paperback: 410 pages, ISBN: 978-1482022445, 1482022443, First Published: 1999
______________________________________________________________
The Sun from the West: Biography of Ibn al-Arabi and His Doctrine, First Published in 2006 by Dar Fussilat (Aleppo), Second Edition: 2013, CreateSpace (Charleston), Paperback: 708 pages, ISBN: 978-1482020229, 148202022X
______________________________________________________________
Ibn Arabi - Time and Cosmology, Routledge (New York, London), hardback/Paperback: 256 pages, ISBNs:, (paperback) 978-0415664011/0415664012, (hardback) 978-0415444996/0415444993, (electronic) 978-0203938249, First Published: 2007
______________________________________________________________
That Is All Indeed: what the seeker needs, CreateSpace (Charleston), Paperback: 74 pages, ISBN: 978-1482077421, 1482077426, First Published: 2010
______________________________________________________________
The Meccan Revelations: (introduction), Amazon - kindle, Paperback: 180 pages, ASIN: B00B0G1S5Y
First Published: 2012
______________________________________________________________
The Meccan Revelations: (volume 1 of 37), By Muhyiddin Ibn Arabi, Trns. by: Mohamed Haj Yousef
Publisher: CreateSpace (Charleston), Paperback: 400 pages, ISBN: 978-1549641893, 1549641891, First Published: 2012
______________________________________________________________
Ibnu’l-Arabi Zaman ve Kozmoloji, By Mohamed Haj Yousef, (Turkish translation of: Ibn Arabi-Time and Cosmology), Trns. by: Kadir Filiz, Nefes Yayincilik (Istanbul), Paperback: 256 pages, ISBN: 978-6055902377, 6055902370, First Published: 2013
______________________________________________________________
Biography of Sheikh Ramadan Deeb, Tayba-al-Garraa (Damascus), CreateSpace (Charleston), Paperback: 400 pages, ISBN: 978-1482014419, 1482014416, First Published: 2013
______________________________________________________________
The Discloser of Desires, (turjuman al-ashwaq), By Muhyiddin Ibn Arabi, Trns. by: Mohamed Haj Yousef, CreateSpace (Charleston), Paperback: 200 pages, ISBN: 978-1499769678, 1499769679, First Published: 2014
______________________________________________________________
The Days of God, By Mohamed Haj Yousef, (Arabic translation of the Single Monad Model of the Cosmos), CreateSpace (Charleston), Paperback: 488 pages, ISBN: 978-1482022919, 1482022915, First Published: 2014
______________________________________________________________
The Single Monad Model of the Cosmos, CreateSpace (Charleston), Paperback: 352 pages, ISBN: 978-1499779844, 1499779844, First Published: 2014
______________________________________________________________
DUALITY OF TIME: Complex-Time Geometry and Perpetual Creation of Space, (this book), CreateSpace (Charleston), Paperback: 360 pages, ISBN: 978-1539579205, 1539579204, First Published: 2018
______________________________________________________________
ULTIMATE SYMMETRY: Fractal Complex-Time, Quantum Gravity and the Incorporeal World, Independently published, Paperback: 323 pages, ISBN: 978-1723828690, 1723828696, First Published: Jan. 2019
______________________________________________________________
TIME CHEST: Particle-Wave Duality from Time Confinement to Space Transcendence, Independently published, Paperback: 220 pages, ISBN: 978-1793927156
Bibliography
(1965). 73 - on the theory of superconductivity. In D. T. HAAR (Ed.), Collected Papers of L.D. Landau, pp. 546 – 568. Pergamon.
Abbott, L. F. and M. B. Wise (1981). Dimension of a quantum-mechanical path. American Journal of Physics 49(1), 37–39.
Adda, F. B. and J. Cresson (2005). Fractional differential equations and the schrödinger equation. Applied Mathematics and Computation 161(1), 323 – 345.
Ambjørn, J., J. Jurkiewicz, and R. Loll (2005, Sep). Reconstructing the universe. Phys. Rev. D 72, 064014.
Avdeenkov, A. V. and K. G. Zloshchastiev (2011). Quantum bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent. Journal of Physics B: Atomic, Molecular and Optical Physics 44(19), 195303.
Bonnor, W. B. (1989). Negative mass in general relativity. General Relativity and Gravitation 21(1143), 1157.
Calcagni, G. (2017). Cosmological constant problem. In Classical and Quantum Cosmology, pp. 301–388. Springer.
Caldwell, R. R., R. Dave, and P. J. Steinhardt (1998, Feb). Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582–1585.
Capria, M. (2005). Physics Before and After Einstein, pp. 82. IOS Press.
Connes, A. and C. Rovelli (1994). Von neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Classical and Quantum Gravity 11(12), 2899.
Cresson, J. (2003). Scale calculus and the schrödinger equation. Journal of Mathematical Physics 44(11), 4907–4938.
DeWitt, B. S. (1967, Oct). Quantum theory of gravity. iii. applications of the covariant theory. Phys. Rev. 162, 1239–1256.
DIRAC, P. A. M. (1951). Is there an aether? Nature 168(4282), 906–907.
Dzhunushaliev, V. and K. G. Zloshchastiev (2013). Singularity-free model of electric charge in physical vacuum: Non-zero spatial extent and mass generation. Central Eur. J. Phys. 11, 325–335.
Einstein, A. (1905). Does the inertia of a body depend upon its energy-content. Ann Phys 18, 639–641.
Einstein, A. (1907). Über die gültigkeitsgrenze des satzes vom thermodynamischen gleichgewicht und über die möglichkeit einer neuen bestimmung der elementarquanta. Annalen der Physik 327(3), 569–572.
Einstein, A. (2005). Zur elektrodynamik bewegter körper [adp 17, 891 (1905)]. Annalen der Physik 14(S1), 194–224.
Einstein, A. (2010). The Principle of Relativity; Original Papers by A. Einstein and H. Minkowski. Translated Into English by M.N. Saha and S.N. Bose; With a, pp. 70–88. General Books LLC.
Fjelstad, P. (1986). Extending special relativity via the perplex numbers. American Journal of Physics 54(5), 416–422.
Gell-Mann, M., R. J. Oakes, and B. Renner (1968, Nov). Behavior of current divergences under . Phys. Rev. 175, 2195–2199.
Haj Yousef, M. A. (2005, May). The concept of time in Ibn Arabi’s cosmology and its implication for modern physics. Ph.D. thesis, University of Exeter, Exeter, UK. published by Routledge in 2007 as (Ibn Arabi - Time and Cosmology).
Haj Yousef, M. A. (2007). Ibn Arabi – Time and Cosmology. London, New York: Routledge.
Haj Yousef, M. A. (2014). The Single Monad Model of the Cosmos: Ibn Arabi’s Concept of Time and Creation. Charleston: CreateSpace.
Haj Yousef, M. A. (2017). DUALITY OF TIME: Complex-Time Geometry and Perpetual Creation of Space. The Single Monad Model of The Cosmos, Book 2. Charleston: CreateSpace.
Haj Yousef, M. A. (2018). Zeno’s paradoxes and the reality of motion according to ibn al-arabi’s single monad model of the cosmos. In S. Mitralexis (Ed.), Islamic and Christian Philosophies of Time, Vernon Series in Philosophy, Chapter 7, pp. 147–178. Wilmington, USA: Vernon Press.
Haj Yousef, M. A. (2019). ULTIMATE SYMMETRY: Fractal Complex-Time, the Incorporeal World and Quantum Gravity. The Single Monad Model of The Cosmos, Book 3. USA: Amazon Independent Publishing Platform.
Hawking, S. (1998). A Brief History of Time, pp. 157. Updated and expanded tenth anniversary edition. Bantam Books.
Hawking, S. W. (1979). Euclidean quantum gravity. In M. Lévy and S. Deser (Eds.), Recent Developments in Gravitation: Cargèse 1978, pp. 145–173. Boston, MA: Springer US.
Hecht, E. (2011). How einstein confirmed e 0=mc 2. American Journal of Physics 79(6), 591–600.
Hogg, D. W., D. J. Eisenstein, M. R. Blanton, N. A. Bahcall, J. Brinkmann, J. E. Gunn, and D. P. Schneider (2005). Cosmic homogeneity demonstrated with luminous red galaxies. Astrophys. J. 624, 54–58.
HUANG, K. (2013). Dark energy and dark matter in a superfluid universe. International Journal of Modern Physics A 28(28), 1330049.
HUANG, K., H.-B. LOW, and R.-S. TUNG (2012). Scalar field cosmology ii: Superfluidity, quantum turbulence, and inflation. International Journal of Modern Physics A 27(26), 1250154.
Ives, H. E. (1952). Derivation of the mass-energy relation. JOSA 42(8), 540–543.
Jaffe, A. and E. Witten. Quantum yang-mills theory, official problem description.
Joyce, M., F. Sylos Labini, A. Gabrielli, M. Montuori, and L. Pietronero (2005, November). Basic properties of galaxy clustering in the light of recent results from the sloan digital sky survey. aap 443, 11–16.
JUMARIE, G. (2001). SchrÖdinger equation for quantum fractal space–time of order n via the complex-valued fractional brownian motion. International Journal of Modern Physics A 16(31), 5061–5084.
Jumarie, G. (2007). The minkowski’s space–time is consistent with differential geometry of fractional order. Physics Letters A 363(1), 5 – 11.
Kragh, H. (2003). Magic number: A partial history of the fine-structure constant. Archive for History of Exact Sciences 57(5), 395–431.
Krasznahorkay, A. J. et al. (2016). Observation of Anomalous Internal Pair Creation in Be8 : A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 116(4), 042501.
Lauscher, O. and M. Reuter (2005, November). Asymptotic Safety in Quantum Einstein Gravity: nonperturbative renormalizability and fractal spacetime structure. ArXiv High Energy Physics - Theory e-prints.
Linde, A. D. (1987). Eternally existing self-reproducing inflationary universe. Physica Scripta 1987(T15), 169.
Lounesto, P. (2001). Clifford Algebras and Spinors. Cambridge Handbooks for Langua. Cambridge University Press.
Mandelbrot, B. (1983). The Fractal Geometry of Nature. Einaudi paperbacks. 1997.
Martel, H., P. R. Shapiro, and S. Weinberg (1998). Likely values of the cosmological constant. The Astrophysical Journal 492(1), 29.
MICHELSON, A. and E. MORLEY (1991). On the relative motion of the earth and the luminiferous ether. SPIE milestone series 28, 450–458.
NOTTALE, L. (1992). The theory of scale relativity. International Journal of Modern Physics A 07(20), 4899–4936.
Nottale, L. and M.-N. Célérier (2007). Derivation of the postulates of quantum mechanics from the first principles of scale relativity. Journal of Physics A: Mathematical and Theoretical 40(48), 14471.
Nottale, L. and J. Schneider (1984). Fractals and nonstandard analysis. Journal of Mathematical Physics 25(5), 1296–1300.
Ohanian, H. C. (2009). Did einstein prove e=mc2? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40(2), 167 – 173.
Ord, G. N. (1983). Fractal space-time: a geometric analogue of relativistic quantum mechanics. Journal of Physics A: Mathematical and General 16(9), 1869.
Panine, M. and A. Kempf (2016, Apr). Towards spectral geometric methods for euclidean quantum gravity. Phys. Rev. D 93, 084033.
Pavšič, M. (2005). Clifford space as a generalization of spacetime: Prospects for qft of point particles and strings. Foundations of Physics 35(9), 1617–1642.
Petit, J. P. and G. D’Agostini (2014). Cosmological bimetric model with interacting positive and negative masses and two different speeds of light, in agreement with the observed acceleration of the universe. Modern Physics Letters A 29(34), 1450182.
Planck, M. (1906). Das prinzip der relativität und die grundgleichungen der mechanik. Verh. Deutsch. Phys. Ges. 8, 136–141.
Poincaré, M. H. (1906). Sur la dynamique de l’électron. Rendiconti del Circolo Matematico di Palermo (1884-1940) 21(1), 129–175.
Ratra, B. and P. J. E. Peebles (1988, Jun). Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406–3427.
Reasenberg, R. D., B. R. Patla, J. D. Phillips, and R. Thapa (2012). Design and characteristics of a wep test in a sounding-rocket payload. Classical and Quantum Gravity 29(18), 184013.
Rochon, D. and M. Shapiro (2004). On algebraic properties of bicomplex and hyperbolic numbers. Anal. Univ. Oradea, fasc. math 11(71), 110.
Rohrlich, F. (1990). An elementary derivation of e=mc 2. American Journal of Physics 58(4), 348–349.
Rovelli, C. (2011). Zakopane lectures on loop gravity. PoS QGQGS2011, 003.
Rucker, R. (2012). Geometry, Relativity and the Fourth Dimension, pp. 125. Dover Books on Mathematics. Dover Publications.
SAHNI, V. and A. STAROBINSKY (2000). The case for a positive cosmological l-term. International Journal of Modern Physics D 09(04), 373–443.
Schlamminger, S., K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger (2008, Jan). Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101.
Susskind, L. (1979, Nov). Dynamics of spontaneous symmetry breaking in the weinberg-salam theory. Phys. Rev. D 20, 2619–2625.
Weinberg, S. (1976, Feb). Implications of dynamical symmetry breaking. Phys. Rev. D 13, 974–996.
Weinberg, S. (1989, Jan). The cosmological constant problem. Rev. Mod. Phys. 61, 1–23.
Zlatev, I., L. Wang, and P. J. Steinhardt (1999, Feb). Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899.
Zloshchastiev, K. G. (2011). Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory. Acta Phys. Polon. B42, 261–292.
... Space Transcendence Read this short concise exploration of the Duality of Time Postulate: DoT: The Duality of Time Postulate and Its Consequences on General Relativity and Quantum Mechanics ...
... eral Relativity and Quantum Mechanics ...
... a quantum-mechanical path. American Journal of Physics 49 (1), 37–39. Adda, F. B. and J. Cresson (2005). Fractional differential equations and the schrödinger equation. Applied Mathematics and Computation 161 (1), 323 – 345. Ambjørn, J., J. Jurkiewicz, a ...
... ’s single monad model of the cosmos. In S. Mitralexis (Ed.), Islamic and Christian Philosophies of Time, Vernon Series in Philosophy , Chapter 7, pp. 147–178. Wilmington, USA: Vernon Press. Haj Yousef, M. A. (2019). ULTIMATE SYMMETRY: Fractal Complex-Time, the Incor ...
... dently published, Paperback: 323 pages, ISBN: 978-1723828690, 1723828696, First Published: Jan. 2019 ______________________________________________________________ TIME CHEST: Particle-Wave Duality from Time Confinement to Space Transcendence , Independently published, Paperback: 220 pages ...
... D 09 (04), 373–443. Schlamminger, S., K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger (2008, Jan). Test of the equivalence principle using a rotating TORSION BALANCE . Phys. Rev. Lett. 100 , 041101. Susskind, L. (1979, Nov). Dynamics of spontan ...
... n Physics D 09 (04), 373–443. Schlamminger, S., K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger (2008, Jan). Test of the equivalence principle using a ROTATING TORSION balance. Phys. Rev. Lett. 100 , 041101. Susskind, L. (1979, Nov). Dynamics o ...
... field. Phys. Rev. D 37 , 3406–3427. Reasenberg, R. D., B. R. Patla, J. D. Phillips, and R. Thapa (2012). Design and characteristics of a wep test in a sounding- ROCKET PAYLOAD . Classical and Quantum Gravity 29 (18), 184013. Rochon, D. and M. Shapiro ...
... tum mechanics from the first principles of scale relativity. Journal of Physics A: Mathematical and Theoretical 40 (48), 14471. Nottale, L. and J. Schneider (1984). Fractals and NONSTANDARD ANALYSIS . Journal of Mathematical Physics 25 (5), 1296–1300. Ohanian, H. C ...
... sp; 1987 (T15), 169. Lounesto, P. (2001). Clifford Algebras and Spinors . Cambridge Handbooks for Langua. Cambridge University Press. Mandelbrot, B. (1983). The Fractal Geometry of Nature . Einaudi paperbacks. 1997. Martel, H., P. R. Shapiro, and S. Weinberg (1998). Likely values ...
... (2018). Zeno’s paradoxes and the reality of motion according to ibn al-arabi’s single monad model of the cosmos. In S. Mitralexis (Ed.), Islamic and Christian Philosophies of Time, Vernon Series in Philosophy , Chapter 7, pp. 147–178. Wilmington, USA: Vernon Press. Haj  ...
... jørn, J., J. Jurkiewicz, and R. Loll (2005, Sep). Reconstructing the universe. Phys. Rev. D 72 , 064014. Avdeenkov, A. V. and K. G. Zloshchastiev (2011). Quantum BOSE LIQUID s with logarithmic nonlinearity: self-sustainability and emergence of spatial extent. Jou ...
I have no doubt that this is the most significant discovery in the history of mathematics, physics and philosophy, ever!
By revealing the mystery of the connection between discreteness and contintuity, this novel understanding of the complex (time-time) geometry, will cause a paradigm shift in our knowledge of the fundamental nature of the cosmos and its corporeal and incorporeal structures.
Enjoy reading...
Mohamed Haj Yousef
Check this detailed video presentation on "Deriving the Principles of Special, General and Quantum Relativity Based on the Single Monad Model Cosmos and Duality of Time Theory".
Download the Book "DOT: The Duality of Time Postulate and Its Consequences on General Relativity and Quantum Mechanics" or: READ ONLINE .....>>>>